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An Introduction to Group Theory through the Lens of the Rubik’s Cube 

Here are four observations: 

1. Many mathematical operations produce a result that has the same form as its operands; 

i.e., the result comes from the same set as the operands. 

2. Many binary mathematical operations disregard the way its elements are grouped. 

3. Many mathematical operations have a unique “identity element.” When performed on 

the identity element and some other element, this produces the other element. 

4. Many mathematical operations have an inverse element for every possible input, so that 

applying the operation on the element and its inverse produces the identity element. 

In fact, many mathematical operations have all four of these properties, so mathematicians 

decided to formalize them into a mathematical structure, consisting both of a set of elements 

and an operation (called the group rule) that together satisfy these conditions. The structure is 

called a group, and these four properties that must be obeyed by every group are called the group 

axioms. They are, in the order above, closure, associativity, (having an) identity element, and 

invertibility. 

Take, for example, the addition operation over the set of integers. It follows all of the 

group axioms. Integers are closed over addition, because adding an integer to an integer always 

results in another integer. The order of grouping of elements for two numbers does not matter: 

(2 + 2) + 3 is equal to 2 + (2 + 3). The additive identity is zero; the additive inverse is the opposite 

of an integer. 

Note that multiplication is not closed over integers, so the multiplication with integers 

is not a group. (Multiplication with real numbers is, however.) Note also that subtraction and 

division, while not considered valid operations (because they violate associativity), are simply 

the inverses of addition and multiplication. Therefore, when expressed in terms of addition and 

multiplication (and adjusting the group’s sets as necessary to include additive and 

multiplicative inverses), these operations can be classified as groups. Another point to note is 

that associativity does not imply commutativity; i.e., changing the order of the terms may not 

create the same result. Groups that are commutative, such as addition and multiplication, are 

called abelian groups; others, such as the Rubik’s cube group described later, are non-abelian. 
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Note that groups can be used to express much more abstract concepts than simple 

algebra. A higher-level example would be that of the Rubik’s cube. Before going more in depth 

into the application of group theory to the Rubik’s cube, some basic definitions need to be 

given: 

Definition 1: cubie: a single, physical block on the Rubik’s cube 

Definition 1.1: corner cubie: one of eight cubies on the corner of the cube, with three 

stickers 

Definition 1.2: edge cubie: one of twelve cubies on an edge of the cube, with two stickers 

Definition 1.3: center cubie: one of six cubies on the center of a face; these do not get 

permuted or oriented, so they will be ignored in this discussion 

Definition 2: { U, D, R, L, F, B }: the set of possible single moves in a Rubik’s cube in 

Singmaster notation, corresponding to clockwise turns of the up (top), down (bottom), 

right, left, front, and back faces 

While it may not be immediately clear how the Rubik’s cube might be expressed as a set 

(Set of cubies? Set of stickers? Set of moves?) It turns out that the Rubik’s cube group (denoted 

(G,·) from here on) is an example of a permutation group, where the set is all possible 

permutations of moves. Each set of moves, or each possible position of the cube, is therefore 

represented by one element of the set. The number of items in the set, or cardinality of the 

underlying set of the group, denoted |G|, is the number of possible permutations of the Rubik’s 

cube— |G| = 43,252,003,274,489,856,000. A Rubik’s cube is non-abelian because changing the 

order of the moves does not produce the same permutation (otherwise solving it would become 

very easy by trial and error!). 

One way, and perhaps the simplest way, to represent a group is through a permutation 

of moves necessary to get to a state of the cube from the solved state. This includes moves such 

as the group is by the permutation of moves. The set is a list of permutations generated by basic 

moves: { U, D, R, L, F, B }, until all possible states of the cube are exhausted. This means { E, U, 

D, R, L, F, B, U·U, U·D, U·R, U·L, … etc. }, where E is the empty move (the identity element) and 

the group rule is composition (·). Any legal state of the Rubik’s cube can be represented by a 

sequence of moves. The problem with this notation is that it can have repetitions of the same 

state: for example, the element U·U·U·U is equivalent to E, and thus would be double-counted. 
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In fact, there are an infinite number of possible permutations (but only a finite number of 

possible states), so a more advanced notation should be used to denote the state of a cube. 

The Rubik’s cube is a subgroup of the symmetric group S48, the permutations of the 48 

non-center stickers on a Rubik’s cube. Symmetric groups are permutation groups with all 

possible elements, but some permutation groups such as the Rubik’s cube group have 

restrictions to prevent illegal combinations. 

If all the stickers on a Rubik’s cube could be freely permuted (which is clearly illegal — 

for example, a single corner cubie cannot have three stickers of the same color, which is 

possible with a total permutation), this would result in a symmetry group of S48, which has a 

cardinality of 48!, or approximately 1.24*1061. (Luckily for speedcubers and mathematicians 

alike,) Many of these permutations are illegal. If we restrict the permutations so that the 

stickers cannot be individually permuted freely, but rather the cubies themselves (the 

arrangements of stickers on each cubie remains constant), then we arrive at what is known as 

the Illegal Rubik’s Cube Group, because even then some operations are illegal due to the 

symmetry of the Rubik’s cube group. The set I of the Illegal Rubik’s Cube Group is defined as: 

C ) C )I = ( 2
12 × S12 × ( 8

3 × S8  

 I  | 2! ! .19 0| = 212 × 1 × 38 × 8 ≈ 5 × 1 20  

The structure of I can be explained intuitively by thinking about the structure of the Rubik’s 

cube, but it requires some other knowledge of cube theory . The cyclic group Cn describes a set 

of length n (cardinality n), and the symmetric group Sn denotes a symmetric group of n 

elements (cardinality n!). The first group here is , which can be written (C2)12, andC2
12  

represents the two orientations of an edge (normal or flipped) for each of the twelve edges. This 

group has cardinality 212. The second group is S12, which represents the permutation of the 

twelve edges. This group has cardinality 12!. The same logic can be applied to the eight corners, 

which have three orientations each. 

Lastly, the product of two groups is another group which is the Cartesian product (×) of 

their sets, and the cardinality of a product is the product of the cardinalities of the operands: 

  g .. |  g  |  g  |  g  | .. | 1 × g2 × g3 × . = | 1 × | 2 × | 3 × .  
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This allows for the calculation of the cardinality of the Illegal Rubik’s Cube Group, which is the 

product of multiple other groups. 

While this appears to make sense, there are still some further rules to govern the moves 

of Rubik’s cubes. For example, the orientations of the first 11 edges determine the orientation of 

the last edge, and the same for the corners. Also, there must always be an even number of flips 

(the proof is not given here), so the size of G is halved from there. 

 (C ) C )  ( v, w, r, s ) | v ∈ C , r ∈ S , w ∈ C , s ∈ S  }G =  2
11 × S12 × ( 7

3 × S8 ÷ 2 = {    7
3  8  2

10  12  

 G | 2! ! .33 0| = 210 × 1 × 37 × 8 ≈ 4 × 1 19  

This is the full, legal Rubik’s cube group and its cardinality. 

Looking over the equations, especially the final, precise definition of the Rubik’s cube 

group, shows that there is a heavy connection to sets. Group theory can, in fact, be considered a 

subfield of set theory, where the sets are bound only with binary operations that follow the group 

axioms (whereas set theoryeory studies sets without these limitations and with n-ary 

operations). But groups are specifically defined in such a way to highlight features of symmetry, 

where symmetry is used in the sense of “reversible transformations that preserve some kind of 

structure” (Berchenko-Kogan). This leads to many supporting theorems (not discussed here) 

that extend past regular set theory, such as Lagrange’s theorem or Burnside’s theorem, that deal 

with more specific applications of groups. For simplicity, only the definition of the Rubik’s cube 

group and its cardinality (which can be explained with basic Set Theory) are discussed in this 

paper, but many more applications of the Rubik’s cube group’s subgroups (groups whose sets are 

subsets of another group) and homomorphisms (similar group structures) exist in a deeper 

knowledge of group theory; for instance to discover algorithms to solve certain states. 

Another observation from this work is that group theory is not often used directly to 

solve algebraic problems, but that a group is often fitted, or associated with a mathematical or 

real-world object, and the resulting group’s properties are studied. This is the case with the 

Rubik’s cube, as it is difficult to immediately draw conclusions from the fascinating toy. 

Writing it as the product of smaller, more understandable groups allows mathematicians to 

break down its structure and properties. 

Group theory has many applications with objects with symmetry in the real world. Most 

clear are symmetry groups, which deal with geometric transformations (not to be confused with 
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symmetric groups, which are a type of permutation group). This has applications from 

determining the properties of lattice structures to the use of Lie groups in the Standard Model 

of physics. The earliest use for groups was in the late 19th century, when mathematicians were 

looking to solve polynomial equations with degree n > 4, realizing the symmetry of the roots and 

generalizing it to modern group theory. Other applications include computational group 

theory, which has applications with computer modeling and graphics to cryptography— the 

widespread RSA encryption uses a the symmetry of modular multiplication groups to its 

advantage. 

Because of the ubiquity of structures that use non-transforming operations, both in 

mathematics and for physical objects, it makes sense to describe an algebraic structure that can 

be used to generalize and mimic this symmetry. It provides an abstract basis for symmetry that 

can be applied to many objects, but is still powerful enough to make quantitative observations 

about behaviors and patterns present in the group. 
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