

Create – Applications From Ideas
Written Response Submission Template

Please see ​Assessment Overview and Performance Task Directions for Student​ for the task
directions and recommended word counts.

Program Purpose and Development

2a)

The program was a website designed to be a multiplayer game in which up to four people could join the
same game “room,” in which the users could see each other’s cars. The programming languages
involved were JavaScript, HTML, and CSS. We used Node.JS for the server-side code, using the
socket.io library to establish websockets for real-time interaction with the client-side code and the
express dependency for routing, as well as the Three.js library client-side library to aid with 3D
rendering. The intended purpose of the program was to create a fun, multiplayer game involving
physical controls (i.e., tilting a smartphone as opposed to pressing keys) that could be played with any
modern smartphone. The video demonstrates the basic server functionality (creating, entering, and
leaving the game room), and show example gameplay of two players using iPhone controllers and an
iMac as the display computer.

AP Computer Science Principles Effective Fall 2017 Page 1​ of 7

https://apcentral.collegeboard.org/pdf/ap-csp-student-task-directions.pdf?course=ap-computer-science-principles

2b)

The iterative process for debugging errors involved logging relevant variables, commenting code added
since the latest working deployment, and paying close attention to error messages.

One problem I solved independently was that the creation of socket.io (websockets) connections would
not always be created before the express (routing) connections, making necessary websocket
verification during routing difficult. After identifying the problem by logging variables and realizing
that the websocket was sometimes undefined, I tried putting an arbitrary 500ms delay before the
verification, but the websocket connection wasn’t always created in time on slow Internet connections
and long delays ensued on fast connections. I improved this by repeatedly checking for the websocket
connection on a 50ms interval, putting some extra strain on the server but ensuring both connections
and lessening unnecessary delay.

Another hurdle I overcame independently was figuring how to UV-map the car (wrapping a 2D design
over the 3D car shape), a concept I wasn’t familiar with. This involved searching documentation and
slightly tweaking parameters on demonstrative code to see their effect. I logged the default UV
parameters and changing one UV plane at a time, refactoring the UV mapping code into a loop
afterwards to remove redundancy.

AP Computer Science Principles Effective Fall 2017 Page 2​ of 7

2c)

One algorithm is the creation of a game room, which happens between the ​#createGame​ button click
and the loading of the game screen on the computer, and is necessary to ensure a unique game id is
created and the user is eligible to join.

Clicking the ​#createGame​ button (in ​public/index.html​) begins the algorithm, triggering the
event handler below in ​public/js/index.js​.

/**
 * Create a game when button is clicked
 */
var​ createGameButton ​=​ ​document​.querySelector(​'#createGame'​);
createGameButton.addEventListener(​'click'​, () ​=>​ {
 ​// redirect to page on click
 socket.emit(​'createNewGame'​, newGameId ​=>​ {
 ​window​.location.href ​=​ ​ ​̀${​window​.location.href}​game/​${newGameId}​ ​̀;
 });
});

This event handler sends out the ​“createNewGame”​ signal to the server, which is handled by
server.js​ event handler (first embedded algorithm) below:

// handle when a person creates a new game
socket.on(​'createNewGame'​, callback ​=>​ {
 ​// make sure user is not already in a game
 ​if​(socket.handshake.session.gameId ​!==​ ​undefined​) ​return​;
 ​// generate random id of five letters
 ​var​ gameIdCharacters ​=​ ​'abcdefghijklmnopqrstuvwxyz'​;
 ​var​ gameId;
 ​do​ {
 gameId ​=​ ​''​;
 ​while​(gameId.length ​<​ ​5​) {
 gameId ​+=​ gameIdCharacters.substr(​Math​.floor(​Math​.random() ​*
gameIdCharacters.length), ​1​);
 }
 } ​while​(​Object​.keys(rooms).indexOf(gameId) ​!==​ ​-​1​);
 rooms[gameId] ​=​ { ​host​: ​null​, ​clients​: [] };
 callback(gameId);
});

This event handler uses two nested loops to randomly create a unique five-character alphabetic game
code randomly, which is sent back to the event handler in ​public/js/index.js​ using a callback
function. After receiving the game code, the event handler redirects to the url “/game/(game id),” which
is then handled by the routing function in ​server.js​ shown below (second embedded algorithm):

app.​get​(​'/game/:gameId'​, (req, res, next) ​=>​ {
 ​// send to game file
 res.sendFile(​ ​̀${__dirname}​/public/game.html ​̀);
 ​// get gameid parameter
 ​var​ gameId ​=​ req.params.gameId.toLowerCase();

AP Computer Science Principles Effective Fall 2017 Page 3​ of 7

 ​var​ socket;
 ​// sync up to socket to join room (keep refreshing until socketId is
updated)
 ​var​ syncInterval ​=​ setInterval(() ​=>​ req.session.reload(() ​=>​ {
 ​if​(req.session.socketId ​!==​ ​undefined​ ​&&​ (socket ​=
io.sockets.sockets[req.session.socketId]) ​!==​ ​undefined​) {
 clearInterval(syncInterval);
 ​// error 1: room does not exist
 ​if​(​Object​.keys(rooms).indexOf(gameId) ​===​ ​-​1​) {
 socket.emit(​'err'​, ​`Game room "​${gameId}​" does not exist. ​̀);
 ​return​;
 }
 ​// error 2: room has more than four people in it
 ​if​(rooms[gameId].clients.length ​>​ ​3​) {
 socket.emit(​'err'​, ​`Game room "​${gameId}​" is already full. ​̀);
 ​return​;
 }
 ​// error 3: user is already in the game
 ​if​(rooms[gameId].clients.find(client ​=>​ client.sessionId ​===
req.session.id) ​!==​ ​undefined​ ​||​ (rooms[gameId].host ​&&
rooms[gameId].host.sessionId ​===​ req.session.id)) {
 socket.emit(​'err'​, ​'You are already in this game on another tab.'​);
 ​return​;
 }
 ​// add gameId to session, session id to game room
 req.session.gameId ​=​ gameId;
 ​// if first person, then host; if not, then client
 ​if​(rooms[gameId].host ​===​ ​null​) {
 rooms[gameId].host ​=​ {
 ​sessionId​: req.session.id,
 ​socketId​: socket.id
 };
 req.session.host ​=​ ​true​;
 } ​else​ {
 ​// create default client
 rooms[gameId].clients.push({
 ​sessionId​: req.session.id,
 ​socketId​: socket.id,
 ​name​: ​null​,
 ​x​: ​0​,
 ​y​: ​0​,
 ​z​: ​0​,
 ​acceleration​: ​0​,
 ​speed​: ​0​,
 ​heading​: ​0​,
 ​turn​: ​0
 });
 req.session.host ​=​ ​false​;
 }
 req.session.save();
 ​// join game room
 socket.join(gameId);
 socket.emit(​'gameId'​, gameId);

AP Computer Science Principles Effective Fall 2017 Page 4​ of 7

 io.to(gameId).emit(​'updateUsers'​, rooms[gameId].clients.map(client ​=>
client.name));
 console.log(​`A user with socket id ​${socket.id}​ has joined the room
${gameId}​. ​̀);
 }
 }), ​50​);
});

This algorithm uses logic (if-statements) to verify that the user can join the game room and determine
whether the user is a host or client, accordingly assigning the correct attributes to the server’s game
room variable, and finally routes the user to the ​public/game.html​ file.

AP Computer Science Principles Effective Fall 2017 Page 5​ of 7

2d)

 socket.on(​'updateUsers'​, names ​=>​ {
 ​/**
 * Position name on top left of correct screen
 */
 ​var​ positions;
 ​switch​(names.length) {
 ​// one person joined: full screen
 ​case​ ​1​:
 positions ​=​ [[​0​, ​0​]];
 ​break​;
 ​// two people in the game: side by side
 ​case​ ​2​:
 positions ​=​ [[​0​, ​0​], [width​/​2​, ​0​]];
 ​break​;
 ​// three people in the game: top two side by side, bottom in center
 ​case​ ​3​:
 positions ​=​ [[​0​, ​0​], [width​/​2​, ​0​], [width​/​4​, height​/​2​]];
 ​break​;
 ​// four people in the game: top two side by side, bottom two side by side
 ​case​ ​4​:
 positions ​=​ [[​0​, ​0​], [width​/​2​, ​0​], [​0​, height​/​2​], [width​/​2​,
height​/​2​]];
 ​break​;
 ​// nobody joined; no positions
 ​case​ ​0​:
 ​default​:
 ​break​;
 }
 ​var​ namesElement ​=​ ​document​.querySelector(​'#names'​);
 namesElement.innerHTML ​=​ ​''​;
 ​for​(​var​ i ​=​ ​0​; i ​<​ names.length; i​++​) {
 ​var​ nameDiv ​=​ ​document​.createElement(​'div'​);
 nameDiv.classList.add(​'name'​);
 nameDiv.style.left ​=​ positions[i][​0​] ​+​ ​40​ ​+​ ​'px'​; ​// added padding 40px
 nameDiv.style.top ​=​ positions[i][​1​] ​+​ ​40​ ​+
document​.querySelector(​'#controls'​).clientHeight ​+​ ​'px'​; ​// added padding
40px plus height of controls
 nameDiv.appendChild(​document​.createTextNode(names[i] ​||​ ​'An unnamed
driver'​));
 namesElement.appendChild(nameDiv);
 }
 ​// update cars and cameras
 updateCars();
 ​// if client
 ​if​(isHost ​!==​ ​undefined​ ​&&​ ​!​isHost) {
 ​// overwrite main render function with client one
 overwriteRender(socketId);
 ​// add .mobile class to controls to transform it
 ​document​.querySelector(​'#controls'​).classList.add(​'mobile'​);
 }
});

AP Computer Science Principles Effective Fall 2017 Page 6​ of 7

This abstraction I made independently is the event listener for the ​“updateUsers”​ event in
public/js/game.js​. This function updates the client-side users array and the display every time
there is a change to the array of users on the server-side (change in number of users or user names). It
manages the positions of the names on the screen, calls the ​updateCars()​ function (from
/public/js/hostGraphics.js​) to update the array of 3D Car objects, and modifies the render
function by calling ​overwriteRender()​ for smartphone controllers— a total of over 180 lines of
code. The ​“updateUsers”​ event is sent out in three different instances by ​server.js​ (when a user
joins and sets their name, when a user leave, and when a game is created). This manages complexity by
grouping together many lines of code which only operate in tandem into a single instruction invoked
with the ​“updateUsers”​ from the server. This abstraction reduces code redundancy, makes any future
need to update the client-side users array(e.g., if the color of a user’s car could be changed) very simple,
and makes debugging the transfer of user data easy because the code is all in one place.

AP Computer Science Principles Effective Fall 2017 Page 7​ of 7

